Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Cours d'analyse - Volume 1

Chatterji Srishti
Date de parution 01/04/1996
EAN: 9782880743147
Disponibilité Pas d'info de disponibilité
L'objectif principal du premier volume est la présentation du théorème de Stokes généralisé pour les sous-variétés différentielles de dimension k dans RN. Ce théorème constitue un outil indispensable pour l'analyse dans les variétés et il est une gén... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurPU POLYTECHNIQU
Nombre de pages616
Langue du livreFrançais
AuteurChatterji Srishti
FormatPaperback / softback
Type de produitLivre
Date de parution01/04/1996
Poids1 g
Dimensions (épaisseur x largeur x hauteur)-
Analyse vectorielle
L'objectif principal du premier volume est la présentation du théorème de Stokes généralisé pour les sous-variétés différentielles de dimension k dans RN. Ce théorème constitue un outil indispensable pour l'analyse dans les variétés et il est une généralisation naturelle des théorèmes dans R2 et R3 de Gauss, Green et Stokes; ces derniers étant d'utilisation courante dans plusieurs théories physiques, ils sont présentés d'abord dans le cadre de l'analyse vectorielle dans R2 et R3 sous une forme habituellement utilisée par les ingénieurs et les physiciens. Leur généralisation complète dans Rn exige le recours à la théorie des formes différentielles qui est dévéloppée en détail dans cet ouvrage.Toutes les connaissances nécessaires pour comprendre ces développements sont présentées dans les premiers chapitres; elles regroupent les théories de base concernant la topologie et le calcul différentiel dans Rn, les théorèmes concernant les fonctions implicites ainsi que la théorie de l'intégration (de Lebesgue) dans Rn.Cet ouvrage intéressera tout particulièrement les étudiants en mathématiques et physique du premier cycle universitaire.