Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Classes de Chern des ensembles analytiques

Schwartz Marie-hélène
Date de parution 26/09/2000
EAN: 9782705663933
Disponibilité Manque temporaire
Les classes de Chern figurent parmi les principaux invariants des variétés analytiques complexes. Le présent travail de Marie-Hélène Schwartz traite de la généralisation de cette idée au cas d'ensembles analytiques complexes singuliers. Le problème ... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurHERMANN
Nombre de pages228
Langue du livreFrançais
AuteurSchwartz Marie-hélène
FormatPaperback / softback
Type de produitLivre
Date de parution26/09/2000
Poids322 g
Dimensions (épaisseur x largeur x hauteur)1,40 x 17,50 x 24,10 cm
Les classes de Chern figurent parmi les principaux invariants des variétés analytiques complexes. Le présent travail de Marie-Hélène Schwartz traite de la généralisation de cette idée au cas d'ensembles analytiques complexes singuliers. Le problème devient alors considérablement plus difficile. Pour le traiter, elle utilise une décomposition, appelée stratification de Whitney, d'un espace analytique complexe en sous-variétés analytiques qui satisfont certaines propriétés d'incidence et elle invente plusieurs techniques très intéressantes qui lui permettent de définir les classes de Chern au moyen de l'indice de champs de repères qui satisfont certaines conditions par rapport aux strates de la stratification de Whitney.Ce travail reprend des idées que l'auteur avait présentées en 1964. La définition des classes de Chern donnée par Marie-Hélène Schwartz est très utile à la fois d'un point de vue conceptuel et d'un point de vue pratique. Les techniques qu'elle introduit dans ce texte ont une portée plus grande que la simple définition des classes de Chern et aident à comprendre la structure des ensembles analytiques singuliers.