Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Théorie des ensembles comme fondement des mathématiques (2)

Leroy Martial
Date de parution 04/09/2025
EAN: 9782493230270
Disponibilité Disponible chez l'éditeur
Ce second volume montre des énoncés indémontrables à partir de ZFC, incluant des hypothèses plus fortes et des énoncés indépendants comme l'hypothèse du continu. Il utilise des outils sémantiques, le théorème de complétude et l'incomplétude de Gödel,... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurCALVAGE MOUNET
Nombre de pages582
Langue du livreFrançais
AuteurLeroy Martial
FormatPaperback / softback
Type de produitLivre
Date de parution04/09/2025
Poids929 g
Dimensions (épaisseur x largeur x hauteur)3,30 x 15,60 x 23,40 cm
Théorie avancée, combinatoire et forcing
Ce second volume montre des énoncés indémontrables à partir de ZFC, incluant des hypothèses plus fortes et des énoncés indépendants comme l'hypothèse du continu. Il utilise des outils sémantiques, le théorème de complétude et l'incomplétude de Gödel, explore les ensembles constructibles et le forcing.Ce volume se termine par d'autres utilisations du forcing : forcing produit, théorème d'Easton, forcing itéré, consistance de l'axiome de Martin, forcing propre, l'axiome PFA et d'autres axiomes de forcing.