Traitement en cours...
Fermer la notification

Le saviez-vous ?

SIDE a travaillé avec ses fournisseurs pour rendre ses colis respectueux de l'environnement.
Fini le plastique !
Le ruban adhésif qui sécurise la fermeture de nos colis et les chips de calage qui immobilisent les livres dans les cartons sont en matériaux recyclables et biodégradables.

Afficher la notification

Le Machine learning avec R

Rougé Daniel, Burger Scott V.
Date de parution 04/10/2018
EAN: 9782412041154
Disponibilité Disponible chez l'éditeur
L'apprentissage automatique, un champ d'étude essentiel aux développements de l'Intelligence artificielle L'apprentissage automatique est un sujet intimidant... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurFIRST INTERACT
Nombre de pages224
Langue du livreFrançais
AuteurRougé Daniel, Burger Scott V.
FormatPaperback / softback
Type de produitLivre
Date de parution04/10/2018
Poids480 g
Dimensions (épaisseur x largeur x hauteur)1,40 x 18,90 x 23,00 cm
L'apprentissage automatique, un champ d'étude essentiel aux développements de l'Intelligence artificielle L'apprentissage automatique est un sujet intimidant jusqu'à ce que vous en connaissiez les principes fondamentaux. Si vous comprenez les principes essentiels du codage, ce livre d'introduction vous aidera à acquérir une base solide dans le domaine de l'apprentissage automatique. En utilisant le langage de programmation R, vous commencerez par apprendre à modéliser avec la régression, puis vous passerez à des sujets plus avancés tels que les réseaux de neurones et les méthodes arborescentes. Finalement, vous plongerez dans le monde de l'apprentissage automatique. en utilisant le package caret associé au langage de programmation R. Une fois que vous aurez développé une réelle familiarité avec des sujets tels que la différence entre les modèles de régression et de classification, vous serez en mesure de résoudre de multiples problèmes d'apprentissage automatique. L'auteur, Scott V. Burger, fournit également plusieurs exemples pour vous aider à bâtir une connaissance pratique de l'apprentissage automatique. Explorez le domaine de l'apprentissage automatique, de ses modèles, de ses algorithmes et de l'entraînement des données Comprenez les algorithmes d'apprentissage automatique supervisés et non supervisés Examinez les notions statistiques utiles pour la conception de données à utiliser dans les modèles Plongez dans les modèles de régression linéaire utilisés dans les affaires et la science Utilisez des réseaux de neurones monocouches et multicouches pour calculer les sorties Regardez comment fonctionnent les modèles arborescents, y compris les arbres de décision courants Obtenez une vue complète de l'écosystème de l'apprentissage automatique en R Explorez la puissance des outils disponibles dans le package caret de R O'Reilly