Traitement en cours...
Fermer la notification

Le saviez-vous ?

SIDE a travaillé avec ses fournisseurs pour rendre ses colis respectueux de l'environnement.
Fini le plastique !
Le ruban adhésif qui sécurise la fermeture de nos colis et les chips de calage qui immobilisent les livres dans les cartons sont en matériaux recyclables et biodégradables.

Afficher la notification

Gradient Boosting - Exploitez les arbres de décision pour le Machine Learning (XGBoost, CatBoost, Li

Guillaume SAUPIN
Date de parution 16/03/2022
EAN: 9782409034022
Disponibilité Disponible chez l'éditeur
Ce livre sur les méthodes de Gradient Boosting est destiné aux étudiants, universitaires, ingénieurs, data scientist qui souhaitent découvrir en profondeur le fonctionnement de cette technique de Machine Learning utilisée pour construire des ensemble... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurENI
Nombre de pages258
Langue du livreFrançais
AuteurGuillaume SAUPIN
FormatPaperback / softback
Type de produitLivre
Date de parution16/03/2022
Poids402 g
Dimensions (épaisseur x largeur x hauteur)1,30 x 17,80 x 21,60 cm
Ce livre sur les méthodes de Gradient Boosting est destiné aux étudiants, universitaires, ingénieurs, data scientist qui souhaitent découvrir en profondeur le fonctionnement de cette technique de Machine Learning utilisée pour construire des ensembles d’arbres de décision. Tous les concepts sont illustrés par des exemples de code applicatif. Ils permettent au lecteur de reconstruire from scratch sa propre librairie d’entraînement des méthodes de Gradient Boosting. En parallèle, le livre présente les bonnes pratiques de la Data Science et apporte au lecteur un solide bagage technique pour construire des modèles de Machine Learning. Après une présentation des principes du Gradient Boosting citant les cas d’application, les avantages et les limites, le lecteur s’imprègne des détails de la théorie mathématique. Une implémentation simple est donnée afin d’en illustrer le fonctionnement. Le lecteur est ensuite armé pour aborder la mise en application et la configuration de ces méthodes. Préparation des données, entraînement, explication d’un modèle, gestion de l’Hyper Parameter Tuning et utilisation des fonctions objectifs sont couverts en détail ! Les derniers chapitres du livre élargissent le sujet vers l’application du Gradient Boosting pour les séries temporelles, la présentation des bibliothèques emblématiques XGBoost, CatBoost et LightGBM ainsi que sur le concept de modèle multi-résolution. Des éléments complémentaires sont en téléchargement sur le site www.editions-eni.fr.