Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Data science : fondamentaux et études de cas

Lutz Michel, Biernat Eric
Date de parution 31/12/2099
EAN: 9782212118025
Disponibilité Publication annulée
Un bon Data Scientist doit savoir naviguer entre différentes disciplines : statistique, algorithmie, informatique, etc., sans a priori théorique. Ce qui prime avant tout, c'est sa faculté à trouver une réponse adéquate à un problème fonctionnel donné... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurEYROLLES
Nombre de pages-
Langue du livreFrançais
AuteurLutz Michel, Biernat Eric
FormatPaperback / softback
Type de produitLivre
Date de parution31/12/2099
Poids1 g
Dimensions (épaisseur x largeur x hauteur)-
Machine Learning avec Python et R
Un bon Data Scientist doit savoir naviguer entre différentes disciplines : statistique, algorithmie, informatique, etc., sans a priori théorique. Ce qui prime avant tout, c'est sa faculté à trouver une réponse adéquate à un problème fonctionnel donné. En ce sens, sa capacité à comprendre son terrain d'action et à trouver la meilleure solution parmi les nombreux choix techniques (plate-forme informatique, logiciels...) et théoriques (méthodes statistiques et algorithmiques) possibles, sous contraintes de temps et de budget, sera sa principale qualité.Cet ouvrage a pour ambition de guider le Data Scientist grâce à une partie théorique qui apprend les bases du métier et une partie pratique qui détaille concrètement comment raisonner autour d'une problématique donnée. La seconde édition revue et augmentée traite entre autres du Deep Learning.