Treatment in progress...
Close notification

Our telephone...

is currently not working. We're doing all we can to get the problem solved as soon as possible. 
In the meantime, please use e-mail to contact us.

Display notification

Contradiction de ZFI

Berliocchi Henri
Publication date 02/08/2022
EAN: 9786138464716
Availability Available from publisher
Nous montrons la contradiction de la théorie dite ZFI qui est la théorie des ensembles usuels ZF à laquelle on ajoute l'axiome d'existence d'un cardinal inaccessible . Robert Solovay a démontré que si cette théorie était consistante, il existait un ... See full description
Attribute nameAttribute value
Common books attribute
PublisherUNIV EUROPEENNE
Page Count52
Languagefr
AuthorBerliocchi Henri
FormatPaperback / softback
Product typeBook
Publication date02/08/2022
Weight85 g
Dimensions (thickness x width x height)0.30 x 15.00 x 22.00 cm
Nous montrons la contradiction de la théorie dite ZFI qui est la théorie des ensembles usuels ZF à laquelle on ajoute l'axiome d'existence d'un cardinal inaccessible . Robert Solovay a démontré que si cette théorie était consistante, il existait un modèle de la théorie des ensembles dans lequel toutes les fonctions étaient mesurables et d'autres axiomes bien utiles.En utilisant ces axiomes en théorie ergodique, nous aboutissons à une contradiction. Notre précédent livre aux éditions universitaires européennes contenait une erreur technique p. 28, qui est ici corrigée avec un axiome de plus. Nous pourrions, en enchainant successivement un nombre fini de fois l'axiome du choix général, aboutir à une contradiction de ZFC par les mêmes méthodes. Nous avons détaillé celles de ZFI, ce qui évite de démontrer des mesurabilités.