Treatment in progress...
Close notification

Did you know that ?

SIDE has worked with its suppliers to make our parcels environmentally friendly.
No more plastics !
The tape that keep our parcels tightly shut and the wedging material that immobilizes books within the cartons are now made of fully recyclable and biodegradable materials.

Display notification

L'infini en mathématiques

Goblot Rémi
Publication date 06/12/2018
EAN: 9782916352688
Availability Missing temporarily
La "crise" des fondements des mathématiques a commencé à se faire sentir vers la fin du XIXe siècle. Elle semblait être due pour une grande part à l'ambiguïté du langage courant. La nécessité d'un formalisme plus rigoureux devenait très vite pressant... See full description
Attribute nameAttribute value
Common books attribute
PublisherCALVAGE MOUNET
Page Count474
Languagefr
AuthorGoblot Rémi
FormatPaperback / softback
Product typeBook
Publication date06/12/2018
Weight752 g
Dimensions (thickness x width x height)2.20 x 15.50 x 24.00 cm
La "crise" des fondements des mathématiques a commencé à se faire sentir vers la fin du XIXe siècle. Elle semblait être due pour une grande part à l'ambiguïté du langage courant. La nécessité d'un formalisme plus rigoureux devenait très vite pressante. Le travail qui s'ensuivit fut ainsi à l'origine du paradigme axiomatico-ensembliste que les mathématiciens continuent à utiliser de nos jours.L'auteur du présent livre propose une introduction réfléchie à cet effort auquel se sont associés d'éminents mathématiciens et philosophes. Rémi Goblot s'adresse en priorité au large public des personnes intéressées par les questions philosophiques et interpellées par l'apparent hermétisme des mathématiques. Il s'agit donc d'un livre d'initiation, non de vulgarisation. Aucune connaissance particulière n'est requise, si ce n'est les mathématiques enseignées dans les cycles primaire et secondaire. En dépit de tous ses efforts pour aplanir les difficultés, la lecture de ce texte demande un travail important pour qui est étranger à la pratique mathématique.Rémi Goblot adopte ici, sans ambages, une position "platonicienne". Selon lui, la rencontre avec un nouvel être mathématique se fait de façon tâtonnante et intuitive. Cette première exploration permet souvent d'obtenir beaucoup d'informations. Il faut ensuite les énoncer clairement, les classer et les insérer dans le corpus des connaissances antérieures. Jusqu'à la fin du XIXe siècle, la recherche mathématique s'est faite sur un mode "naïf", ce qui n'exclut pas la rigueur.Les notions premières (par exemple celle de nombre entier) étaient considérées comme allant de soi, faisant partie de notre entendement.Ce processus d'abord de découverte tâtonnante, puis de mise au point formelle, semble conforter les convictions platoniciennes de Rémi Goblot sur l'existence des choses mathématiques, découvertes plutôt que créées. Les lecteurs qui auront pris la peine d'accompagner l'auteur dans son exposé en jugeront !Rémi Goblot est professeur honoraire à l'université de Lille. Ancien élève de l'École normale supérieure de Cachan (promotion 1958) agrégé en 1962, il soutient sa thèse d'état en 1971 (intitulée "Sur deux classes de catégories de Grothendieck"), Il est auteur de plusieurs ouvrages mathé-matiques destinés au public universitaire, ouvrages qui ont eu à chaque fois un réel succès.