Treatment in progress...
Close notification

Our telephone...

is currently not working. We're doing all we can to get the problem solved as soon as possible. 
In the meantime, please use e-mail to contact us.

Display notification

Mathématiques et connaissance du monde réel avant Galilée

Chemla Karine, Delbraccio Mireille, Rommevaux Sabine
Publication date 25/05/2010
EAN: 9782916097268
Availability Available from publisher
On associe souvent le nom de Galilée au tournant que constitua, pour les sciences, la mathématisation de la physique et, plus spécifiquement, celle du mouvement. Dans quelle mesure Galilée héritait-il de siècles de réflexions en philosophie naturelle... See full description
Attribute nameAttribute value
Common books attribute
PublisherOMNISCIENCE
Page Count350
Languagefr
AuthorChemla Karine, Delbraccio Mireille, Rommevaux Sabine
FormatPaperback / softback
Product typeBook
Publication date25/05/2010
Weight571 g
Dimensions (thickness x width x height)2.60 x 16.00 x 24.00 cm
On associe souvent le nom de Galilée au tournant que constitua, pour les sciences, la mathématisation de la physique et, plus spécifiquement, celle du mouvement. Dans quelle mesure Galilée héritait-il de siècles de réflexions en philosophie naturelle et de tentatives d'employer des outils mathématiques pour rendre compte du réel ? Telle est la question-clé qui oriente cet ouvrage. On y examine comment, entre le XIVe et XVIe siècles, s'articulent arguments mathématiques, physiques, mais aussi philosophiques, logiques ou théologiques, dans différents domaines : la composition du continu à partir d'atomes, la musique, la mécanique et l'architecture. Ces préoccupations seront au coeur des travaux de Galilée.À travers les écrits des atomistes d'Oxford, comme Nicole Oresme, Thomas Bradwardine ou Thomas Harriot, ce livre étudie tout d'abord comment on a associé mathématiques et phénomènes réels dans les discussions sur le continu. L'examen des théories musicales de Jean de Murs et de Jean de Boen permet ensuite de jeter un jour nouveau sur l'emploi des mathématiques pour traiter le rythme ou la consonance dans le contexte de l'Ars Nova. Puis l'ouvrage se tourne vers l'utilisation des mathématiques en mécanique. On y montre comment Blaise de Parme introduit les raisonnements de philosophie naturelle dans une science des poids et des machines simples, auparavant purement mathématique. On y dégage le lien intime qui se noue entre outils mathématiques et raisonnements physiques dans la mécanique galiléenne. Le livre se conclut par un nouvel éclairage sur le rôle des mathématiques dans l'architecture de la Renaissance.