Treatment in progress...
Close notification

Did you know that ?

SIDE has worked with its suppliers to make our parcels environmentally friendly.
No more plastics !
The tape that keep our parcels tightly shut and the wedging material that immobilizes books within the cartons are now made of fully recyclable and biodegradable materials.

Display notification

Classes de Chern des ensembles analytiques

Schwartz Marie-hélène
Publication date 26/09/2000
EAN: 9782705663933
Availability Missing temporarily
Les classes de Chern figurent parmi les principaux invariants des variétés analytiques complexes. Le présent travail de Marie-Hélène Schwartz traite de la généralisation de cette idée au cas d'ensembles analytiques complexes singuliers. Le problème ... See full description
Attribute nameAttribute value
Common books attribute
PublisherHERMANN
Page Count228
Languagefr
AuthorSchwartz Marie-hélène
FormatPaperback / softback
Product typeBook
Publication date26/09/2000
Weight322 g
Dimensions (thickness x width x height)1.40 x 17.50 x 24.10 cm
Les classes de Chern figurent parmi les principaux invariants des variétés analytiques complexes. Le présent travail de Marie-Hélène Schwartz traite de la généralisation de cette idée au cas d'ensembles analytiques complexes singuliers. Le problème devient alors considérablement plus difficile. Pour le traiter, elle utilise une décomposition, appelée stratification de Whitney, d'un espace analytique complexe en sous-variétés analytiques qui satisfont certaines propriétés d'incidence et elle invente plusieurs techniques très intéressantes qui lui permettent de définir les classes de Chern au moyen de l'indice de champs de repères qui satisfont certaines conditions par rapport aux strates de la stratification de Whitney.Ce travail reprend des idées que l'auteur avait présentées en 1964. La définition des classes de Chern donnée par Marie-Hélène Schwartz est très utile à la fois d'un point de vue conceptuel et d'un point de vue pratique. Les techniques qu'elle introduit dans ce texte ont une portée plus grande que la simple définition des classes de Chern et aident à comprendre la structure des ensembles analytiques singuliers.